Global analysis of autocorrelation functions and photon counting distributions in fluorescence fluctuation spectroscopy.

نویسندگان

  • Victor V Skakun
  • Anatoli V Digris
  • Vladimir V Apanasovich
چکیده

In fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis, the same experimental fluorescence intensity fluctuations are used, but each analytical method focuses on a different property of the signal. The time-dependent decay of the correlation of fluorescence fluctuations is measured in FCS yielding molecular diffusion coefficients and triplet-state parameters such as fraction and decay time. The amplitude distribution of these fluctuations is calculated by PCH analysis yielding the molecular brightness. Both FCS and PCH give information about the molecular concentration. Here we describe a global analysis protocol that simultaneously recovers relevant and common parameters in model functions of FCS and PCH from a single fluorescence fluctuation trace. Application of a global analysis approach allows increasing the information content available from a single measurement that results in more accurate values of molecular diffusion coefficients and triplet-state parameters and also in robust, time-independent estimates of molecular brightness and number of molecules.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The photon counting histogram in fluorescence fluctuation spectroscopy.

Fluorescence correlation spectroscopy (FCS) is generally used to obtain information about the number of fluorescent particles in a small volume and the diffusion coefficient from the autocorrelation function of the fluorescence signal. Here we demonstrate that photon counting histogram (PCH) analysis constitutes a novel tool for extracting quantities from fluorescence fluctuation data, i.e., th...

متن کامل

High-pressure fluorescence correlation spectroscopy.

We demonstrate that a novel high-pressure cell is suitable for fluorescence correlation spectroscopy (FCS). The pressure cell consists of a single fused silica microcapillary. The cylindrical shape of the capillary leads to refraction of the excitation light, which affects the point spread function of the system. We characterize the influence of these beam distortions by FCS and photon-counting...

متن کامل

Evaluation of a femtosecond fiber laser for two-photon fluorescence correlation spectroscopy.

This work evaluates a femtosecond fiber laser for use in two-photon fluorescence fluctuation spectroscopy. Fiber lasers present an attractive alternative to Ti:Sapphire systems because of their compact size and portability. Autocorrelation of the second harmonic generation signal from the laser demonstrates that its stability is sufficient for two-photon fluorescence correlation spectroscopy. F...

متن کامل

Data acquisition card for fluctuation correlation spectroscopy allowing full access to the detected photon sequence

Typically, fluctuation correlation spectroscopy ~FCS! data acquisition cards measure the number of photon events per time interval ~i.e., bin!—time mode. Commercial FCS cards combine the bins through hardware in order to calculate the autocorrelation function. Such a design therefore does not yield the time resolved photon sequence, but only the autocorrelation of that sequence. A different acq...

متن کامل

Time-integrated fluorescence cumulant analysis in fluorescence fluctuation spectroscopy.

We introduce a new analysis technique for fluorescence fluctuation data. Time-integrated fluorescence cumulant analysis (TIFCA) extracts information from the cumulants of the integrated fluorescence intensity. TIFCA builds on our earlier FCA theory, but in contrast to FCA or photon counting histogram (PCH) analysis is valid for arbitrary sampling times. The motivation for long sampling times li...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in bioscience

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2011